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Figure 1: Comparing our audio-visual combined solution with visual-only and audio-only solutions. (a-c) show that our combined solution
handles occlusion in the mouth region better than the visual-only solution. (d-f) show that when the user is not speaking, our solution
reconstructs the mouth shape unlike the audio-only solution. In the audio waveforms, the red line indicates the time position of the input frame.

Abstract

We present a real-time facial tracking and animation system based
on a Kinect sensor with video and audio input. Our method requires
no user-specific training and is robust to occlusions, large head ro-
tations, and background noise. Given the color, depth and speech
audio frames captured from an actor, our system first reconstructs
3D facial expressions and 3D mouth shapes from color and depth
input with a multi-linear model. Concurrently a speaker-independent
DNN acoustic model is applied to extract phoneme state posterior
probabilities (PSPP) from the audio frames. After that, a lip mo-
tion regressor refines the 3D mouth shape based on both PSPP and
expression weights of the 3D mouth shapes, as well as their confi-
dences. Finally, the refined 3D mouth shape is combined with other
parts of the 3D face to generate the final result. The whole process
is fully automatic and executed in real time.

The key component of our system is a data-driven regresor for
modeling the correlation between speech data and mouth shapes.
Based on a precaptured database of accurate 3D mouth shapes and
associated speech audio from one speaker, the regressor jointly uses
the input speech and visual features to refine the mouth shape of a
new actor. We also present an improved DNN acoustic model. It not
only preserves accuracy but also achieves real-time performance.

Our method efficiently fuses visual and acoustic information for 3D
facial performance capture. It generates more accurate 3D mouth
motions than other approaches that are based on audio or video
input only. It also supports video or audio only input for real-time
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facial animation. We evaluate the performance of our system with
speech and facial expressions captured from different actors. Results
demonstrate the efficiency and robustness of our method.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—animation;

Keywords: real time facial tracking, speech animation, facial
animation

1 Introduction

With recent advances in real-time facial tracking and performance
capturing techniques, performance-driven facial animation has be-
come available for many consumer-level real-time applications, such
as telecommunications, computer games, training and other online
interactions. Although state-of-the-art techniques [Weise et al. 2011;
Li et al. 2013; Bouaziz et al. 2013; Cao et al. 2013; Cao et al. 2014a]
demonstrate relatively accurate 3D tracking results for large-scale
facial expressions, it is still difficult for them to capture accurate
3D mouth shapes, especially for fast lip motions when the actor is
talking. Since all these methods are based on color or depth sensors,
they are also prone to fail when the face is partially occluded or the
head is in an extreme pose.

In this paper, we present a real-time facial tracking and animation
system that is based on a Kinect sensor with audio and video input.
Our method can be applied to any new user without any user-specific
training and is robust to occlusions, extreme head pose, and back-
ground noise. The key idea of our method is that the face shape,
especially the mouth shape can be derived from the actor’s facial
appearance and speech. Based on this observation, our system cap-
tures the color, depth of an actor’s face and speech with a Kinect
sensor and jointly uses the audio and video input to reconstruct the
actor’s 3D facial performance in real time.

A key challenge in designing this real-time facial animation system
is to find a model for representing both 3D face shapes and their
correlated speech data. On one hand, the model should be generic
enough so that it can well cover the face shapes and voice variations
of difference identities to avoid user-specific training or adaptation.
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On the other hand, the model also should be efficient so that it can
be evaluated in real time.

In this work, we use three models instead of a unified one to model
the face shapes and correlated speech data. We apply a multi-linear
model learned from a public face dataset to represent the identity and
expression variations of 3D face shapes. We also develop a speaker-
independent DNN acoustic model that is learned from a public
speech dataset to extract the phoneme state posterior probabilities
(PSPP) from speech audio in real time. Our acoustic model not only
preserves the accuracy of DNN-based acoustic models for different
speakers but also achieves real-time performance by removing the
forward dependency. These two generic models allow us to extract
user-independent features from input frames in real time and avoid
user-specific training.

To reconstruct the 3D mouth shape from joint visual and acoustic
features, we design a data-driven lip motion regressor for modeling
the correlation between speech data and mouth shapes. The regressor
is constructed from a database of 3D mouth shape sequences and
synchronized speech audio captured from a speaker in an offline
preprocessing step. To this end, we apply the multi-linear model to
fit the speaker’s face and mouth shapes in each frame and extract the
PSPP from the corresponding audio frame, and then use the resulting
lip performance, represented as feature positions around the mouth
region, and the PSPP to index the corresponding mouth shapes. To
better model the speech coarticulation, we associate a subsequence
of mouth shapes with the index of the center frame.

At run time, our system first reconstructs 3D facial expressions from
color and depth frames with the multi-linear model and then extracts
the PSPP from audio frames using the DNN-based acoustic model.
Based on lip performance and PSPP as well as their confidences,
the lip motion regressor refines the 3D mouth shape. It searches the
database to find the first K subsequences whose index best matches
the inputs. From all candidates, the regressor selects a mouth shape
with the optimal distance to both the input and the subsequences of
previous frames. We design a fast search scheme to quickly find
the candidates from the database for inputs with varying visual and
acoustic confidences. Finally, we combine the refined 3D mouth
shape with other parts of the 3D face to generate the final result. The
whole process is fully automatic and executed in real time.

With combined visual and acoustic inputs, our system reconstructs
better 3D facial shapes than other approaches that are based on audio
or video input only. It is robust to occlusions, extreme head poses,
and supports video or audio only input for real-time facial animation.
We evaluate the performance of our system with speech and facial
expressions captured from different actors. Results demonstrate the
efficiency and robustness of our method.

2 Related Work

Facial Performance Capturing and Tracking have been exten-
sively studied in both computer graphics and vision. Here we only
discuss the real-time 3D facial performance capturing approaches
that are most related to our method. Please refer to [Ren et al.
2014] for discussions of recent real-time 2D facial tracking work
and [Beeler et al. 2011] for discussions about the latest offline 3D
facial performance capturing methods.

For color and depth input, Weise et al. [2011] construct a user-
specific blendshape model as a preprocessing stage and then fit the
blendshape weights for each color and depth frame at run time. The
resulting weights are then transferred to other 3D avatars for real-
time facial animation. Bouaziz et al. [2013] and Li et al. [2013]
present solutions to further avoid the preprocessing by jointly opti-
mizing the user-specific expression model and expression parameters

at run time. Although these methods can capture the 3D facial per-
formance in real time and are robust to illumination changes, they
may fail for faces with large rotation or occlusion. Recently, Hsieh
et al. [2015] propose a method which gives uninterrupted facial
tracking even with large occlusions. However, it can not recover
motions of the occluded regions.

For color input, Cao et al. [2013] present a regression method for
real-time 3D facial performance capture that requires user-specific
training and calibration. Later, Cao et al. [2014a] propose a general
regressor that is learned from a public image dataset for reconstruct-
ing 3D facial shapes from video frames.

Different from these methods that use visual input only for capturing
3D facial performance, our method exploits both visual and acoustic
input for this task and thus reconstructs more accurate mouth shape
than existing methods, especially when the mouth region is occluded.

Speech-driven facial animation has also been studied for a long
time in computer graphics and speech synthesis. A set of approaches
directly construct the mapping from audio to visual space. Chuang
and Bregler [2005] construct a database relating audio pitch to head
motion, and use it to drive head motion with audio input. Le et
al. [2012] make use of Nonlinear Canonical Correlation Analysis
(NCCA) and non-negative linear regression model to further syn-
thesize eye gaze and eyelid motion for live speech, respectively.
Brand [1999] models the mapping between vocal and facial dy-
namics with an HMM and applies a trajectory optimization for
synthesizing smooth facial animations. Massaro et al. [1999] use
an artificial neural network to map the Mel-Frequency Cepstral Co-
efficients (MFCC) to visual parameters. Fu et al. [2005] give a
comparison of several single HMM-based conversion approaches.
Wang et al. [2006] use a single hidden Markov model to realize the
mapping between MFCC and Facial Animation Parameters (FAP).
Xie and Liu [2007] propose a coupled HMM to realize video re-
alistic speech animation. Zhuang et al. [2010] propose a method
using the minimum converted trajectory error criterion to optimize
single Gaussian Mixture Model (GMM) training to improve the
audio-visual conversion. Although these methods can be used for
different speakers, their robustness depends heavily on the scale of
the stereo audio-visual database, which usually is very limited, that
is used to train such a mapping function.

Other approaches synthesize speech animations from a phone se-
quence labeled from the audio input. Bregler et al. [1997] create
speech video of an new phoneme sequence by using the mouth im-
ages in the training footage whose phonemes are matched to input
phonemes. Ezzat et al. [2000] convert a phone sequence into smooth
speech video by morphing corresponding visemes. Lei et al. [2003]
map the phonemes to visemes using a fixed table, where the visemes
are modeled by an HMM. King and Parent [2005] create animation
for known text by building a facial model and its viseme set. Cao
et al. [2005] learn a graph of phoneme nodes with corresponding
face motions and emotion tags from the captured speech animation
data and use the graph to generate expressive speech animations
with a new phoneme and emotion tag sequence. Deng et al. [2006]
train a speech coarticulation model and an expression model from
the motion capture data and then apply the models for phone-based
expressive speech animation generation. Wampler et al. [2007]
model expressive speech animations as a multi-linear model of iden-
tity, expression and phonemes and apply it for constructing the
speech animation of a phoneme sequence for a new 3D face. Sun
et al. [2008] use phoneme-based key-frame interpolation for lips
animation. Taylor et al. [2012] propose dynamic visemes to better
model and synthesize speech coarticulation. In these methods, the
phoneme sequence is transformed from the speech signals either by
human labelers or by an automatic speech recognizer (ASR) [Ra-
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biner and Juang 1993]. While the former is expensive and subject
to inconsistency resulting from human disagreement in phoneme
labeling, the latter always requires a large buffer of forward frames
to determine the current phoneme and thus leads to delay. As a
result, all these existing solutions are unacceptable for real-time
facial animation.

Instead of converting input speech into phonemes though complete
decoding as in an ASR system, we develop a speaker-independent
DNN acoustic model for extracting the phoneme state posterior
probabilities from the audio input in real time. Our model not only
preserves the accuracy and robustness of the DNN-based methods
but also achieves real-time performance. The lip motion regressor
used in our solution is similar to video rewrite in [Bregler et al. 1997]
and also uses K-nearest neighbors for speech animation generation.
However, our method is different from video rewrite in several ways.
While video rewrite only uses audio for offline speech animation,
our method jointly uses audio and video features for real-time facial
animation. By combining information from both input channels, our
method can generate better 3D mouth motions and is more robust.
Moreover, instead of selecting single video frames for result synthe-
sis, our method generates results using overlapped subsequences of
the mouth animations and thus better maintains the speech coartic-
ulation. Finally, while video rewrite requires user-specific training
footage, our method models the mouth shape of new actors and the
ones in the database with user-independent expression weights and
avoids user-specific training.

3 Overview

Our system utilizes a single Kinect camera to record color and depth
images of any user’s facial performance as well as the user’s speech
data. With the visual and audio input, the system reconstructs the
user’s 3D facial performance in real time. Our system contains a
training stage and an online stage as shown in Fig. 2. In the training
stage, we first train a real-time DNN model to extract PSPPs from
audio input, and then, by using the DNN model and a pre-trained
multilinear model which represents face geometry as a set of identity
and expression coefficients, we construct an audio-visual database
which is used to model the relationship between the audio-visual
input and the final mouth motion. In the online stage, we take the
visual and audio input from a Kinect to generate the user’s 3D facial
performance in real time, with the help of the audio-visual database
and the DNN and multilinear models.

Real-time DNN model and multilinear face model In the train-
ing stage, we first train a speaker-independent deep neural network
(DNN) model, which estimates the PSPP vector, a, of any user’s
speech in real time. As the PSPP vector is speaker-independent and
is highly correlated to speech content, we use it as our speech feature
for estimating mouth motion when people speak.

Then we follow the method in [Cao et al. 2014b] and use their Face-
Warehouse database (including 3D meshes of 150 identities with 47
pre-defined expressions) to train a multilinear model. This model
is used to track facial motion from any user’s visual input. Besides,
we also use the multilinear model to define a user-independent vi-
sual feature. We first choose n vertices on the mouth region of the
multilinear face mesh, and then the positions of the vertices, which
are synthesized on a neutral identity with the tracked expression,
are used as a user-independent visual feature, denoted as the lip
performance vector, v.

Audio-visual database The audio-visual database, aiming to
model the relationship between the audio-visual features and the
final mouth motion, contains both the audio-visual signal and the

corresponding ground truth mouth motion. To construct the database,
we record visual and audio data of one actor/actress speaking various
speech content with a neutral expression. To record the ground-truth
mouth motion, we place dense facial markers on the actor/actress’s
face and record the 3D positions of those markers. After the data
collection, we estimate the PSPP vector using the DNN model and
the lip performance vector using the multilinear model for each
frame. At the same time, the ground-truth 3D mouth shape is also re-
constructed by marker positions and further fitted by the multilinear
model. The obtained expression coefficient is a user-independent
mouth shape representation, denoted as the mouth coefficient vector,
w. Thus the database is constructed by a, v and the corresponding w
at each frame.

Online tracking The online stage contains four components. The
visual tracking component utilizes the multilinear model to fit the
online color and depth input. By doing this, the user’s head pose q,
facial identity wid, facial expression wexp and the lip performance
vector are reconstructed at each frame. The audio processing compo-
nent extracts the PSPP vector of the input speech at each frame using
the DNN model. By taking both PSPP vector and lip performance
vector as input, the lip motion regression component utilizes our
database to robustly and accurately reconstruct the mouth coefficient
vector at each frame. Finally, by combining the mouth coefficient
vector with the facial expression estimated by visual tracking, the
full face geometry is reconstructed and can be transferred to an
avatar in real time.

4 Offline Training

This section describes our training stage, which contains the con-
struction of the real-time DNN model, the multilinear model and
the audio-visual database. To build the multilinear model, we ex-
actly follow the method in [Cao et al. 2014b]. Please refer to their
paper for details. We will discuss our real-time DNN model and
audio-visual database in the following subsections.

4.1 Real-time DNN Model

When people talk, their mouth shapes are highly correlated to their
speech content. Based on this observation, many techniques are
proposed to explore this correlation and reconstruct mouth shapes
from audio signals. MFCC, Perceptual Linear Prediction (PLP) and
other low-level audio features are commonly used in these tech-
niques [Zhang et al. 2013; Brand 1999]. However, different speakers
may have quite different vocal characteristics, leading to features
quite different even when they are pronouncing the same words.
Thus these techniques are limited to work on specific speakers.
Their models need to be rebuilt for each new speaker.

On the other hand, in speech recognition, speech content can be
recognized regardless of the vocal characteristics of different speak-
ers [Seide et al. 2011b]. However, to fully recognize the speech
content at any time instance, forward speech data is always required,
thus these techniques cannot be performed in real-time. Our goal
is to build a real-time model that reconstructs mouth shapes from
speech data regardless of speaker. So we require a real-time audio
feature that is highly correlated to speech content but is speaker-
invariant. To achieve this goal, instead of recognizing input speech
as words or phonemes though complete decoding as in an automatic
speech recognition (ASR) system, we take the intermediate results
which are the PSPPs predicted by DNN models. For the DNN
acoustical model training, we adopt the Context-Dependent DNN-
HMMs [Yu et al. 2010; Dahl et al. 2012; Seide et al. 2011a], which
are a recently very promising and possibly disruptive acoustic model
in ASR. The CD-DNN-HMMs model structure is inherited from
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Figure 2: Overview of our system.

a matching GMM-HMM model that has been trained on the same
data. That model is also used to initialize the class labels through
forced alignment. The CD-DNN-HMMs model is trained using the
309-hour Switchboard-I training set [Godfrey and Holliman 1997].
In GMM-HMM model training, the system uses 13-dimensional
PLP features with rolling-window mean-variance normalization and
up to third-order derivatives with 52 dimensions for each frame. The
speaker-independent cross-word triphones use the common 3-state
topology and share 9304 CART-tied states. The whole training set
is initialized with the tied state ID on alignment by a 60-mixture
GMM-HMM. The next step of DNN training is to learn a mapping
function between the contextual features and the tied state labels
through a multi-layer, Deep Neural Network.

To address the real-time challenge in the desired online conversion
system, we propose to use single-sided contextual features as DNN
input. It is known that using both left and right long-span context
features with derivatives can help improve DNN classification accu-
racy, but it also introduces time delay as the system needs to wait
until all the contextual frames arrive to start the prediction of the
current frame. For the same reason, we further remove all of the
feature derivatives and use only the static feature alone in preparing
the DNN inputs. As a result, we only use the static 13th-order PLP
features on the current frame and its ten previous frames, to guaran-
tee real-time performance in the conversion stage. The DNN model
is trained with 7 data sweeps, consisting of 13x11 dimensions in the
input layer, 7 layers of 2k hidden nodes and 9304 states in the output
layer.

From our experiments, the accuracy of the PSPPs estimated by our
real-time DNN model is a little bit lower than the original DNN
model in [Seide et al. 2011b], which is trained with both forward and
backward speech data. However, when judging from the accuracy
of the mouth shape, our real-time model is comparable to the model
used in [Seide et al. 2011b]. The validation of our real-time DNN
model is detailed in the experiment section.

4.2 Audio-Visual Database

To robustly reconstruct mouth shapes from speech input, we require
the database to cover the whole speech space. To satisfy this, we use
designed content with 594 English sentences [Zhang et al. 2013],

which contain most of the speech variations in the English language.
Before recording, we attach dense facial IR markers (about 90-110
markers) on the actor/actress’s face to reconstruct the ground-truth
mouth shape. In the recording, with the actor/actress reading those
sentences, we record both the speech data and the 3D positions of
the facial markers.

For the speech data, we extract the 132 dimensional PSPP vector at
100 FPS, using the DNN model trained in the previous subsection.
The PSPP vector describes the speech content and is designed to be
speaker-independent [Seide et al. 2011b]. We use ai to denote the
PSPP vector at frame i. For the marker position data, we first choose
one recorded frame with a neutral expression and align the markers
of this frame to a scanned neutral face of the actor/actress. Then
we reconstruct the actor/actress’ 3D facial motions at each frame by
performing Laplacian deformation [Botsch and Sorkine 2008] on the
scanned face mesh driven by the facial markers. As we have attached
dense markers on the face, the deformed mesh can be treated as the
ground-truth face mesh. The reconstructed meshes are further fitted
by the multilinear model, and thus the identity-independent mouth
motion is expressed as the expression weights of the multilinear
model. As we only use it to represent mouth shape, we call it the
mouth coefficient vector and denote it as wi for frame i.

As the multilinear model is fitted to the recorded marker positions,
the lip performance vector is obtained by synthesizing the posi-
tions of the predefined n vertices on the neutral identity. The lip
performance vector is denoted as vi for frame i.

After a syncing step, we construct the database as D = {di =
(ai, vi,wi)|, i = 1, ..., N} where N denotes the total number of
frames in the database. In general, the sentences are read for more
than 30 minutes, thus N is about 0.2 million.

5 Online Tracking

This section describes our online tracking algorithm in detail. The
visual tracking step (Sec. 5.1) utilizes depth and color images to
estimate vt for the input frame t. The audio processing step (Sec. 5.2)
takes an audio waveform as input to estimate at for the same input
frame t. Then the lip motion regression step (Sec. 5.3) takes vt and
at as input to reconstruct the final mouth shape at frame t. Finally,

182:4        •        Y. Liu et al.

ACM Transactions on Graphics, Vol. 34, No. 6, Article 182, Publication Date: November 2015



(a) (b) (c) (d)

Figure 3: Visual Tracking. (a) Depth with neutral expression. (b)
Result of identity fitting. (c) One color frame with detected features.
(d) Result of expression fitting.

the mouth shape is composed with the global motion and facial
expression obtained in the visual tracking step to synthesize the final
facial animation (Sec. 5.4).

5.1 Visual Tracking

Our visual tracking component estimates the user’s facial motions
from online depth and color input in real time. The visual tracking
is user-independent, so it works for any input user. We achieve this
by using a multilinear model [Cao et al. 2014b]. For any 3D face M,
the multilinear model represents it as a set of identity weights wid

and a set of expression weights wexp, denoted as:

M = R (Cr ×2 wid ×3 wexp) + T,

where Cr is the reduced core tensor. And we use q = [R, T ] to
denote the global motion parameters. In our visual tracking, we ask
users to start from a neutral expression to perform identity fitting.
In particular, we fix wexp to neutral and estimate 3D head pose
q and wid iteratively by fitting the multilinear model to the depth
(shown in Fig. 3(a,b)) captured by a consumer depth sensor like the
new Kinect. The correspondence is obtained by Iterative Closest
Point (ICP) [Besl and McKay 1992]. After identity fitting on the
first frame, we perform expression fitting for each of the following
frames in real time, i.e. we fix wid and iteratively estimate 3D head
pose qt and wexp

t . Notice that in the expression fitting, we only fit
sparse facial feature points tracked from the color image [Ren et al.
2014] (shown in Fig. 3(c,d)) and map them to the depth image to get
the 3D positions. Notice that in the latest literature, there are some
visual-based face tracking techniques which refine the user-specified
facial expression space by online updates [Li et al. 2013; Bouaziz
et al. 2013; Cao et al. 2014a]. We believe these techniques can also
be used in our system to pursue better visual tracking results.

The visual tracking technique estimates the overall expressions of the
user. However, it is difficult to reconstruct the detailed mouth shape
robustly and accurately, especially for situations with occlusion,
lighting change and fast motion. As formulated in Sec. 3, we will
combine the mouth shape obtained by the visual tracking with audio
information to better reconstruct the mouth shape in the following
sections. To be consistent with the representation in the database,
we still use the lip performance vector to represent the speaker-
independent mouth shape obtained by the visual tracking. To be
specific, for each input frame t, we use wexp

t and wid
neu to synthesize

a mesh and use the pre-defined n vertices around the mouth region.
The position of the n vertices is denoted as vt for input frame t.

5.2 Audio Processing

Besides color and depth images being recorded online, the audio
signal is also recorded by the new Kinect simultaneously. After
syncing the recorded audio stream with the images, we estimate the

PSPP vector for each frame t using the DNN model, denoted as at,
which will be combined with vt to reconstruct the mouth shape of
the user in the following section.

5.3 Lip Motion Regression

We use {at, vt} to reconstruct the mouth shape {wt} for each input
frame t. As mentioned before, the reason we combine at and vt is
because they each may have ambiguities in determining the mouth
shape in certain situations. For example, visual tracking always has
failure cases especially when there is occlusion, large lighting change
or pose change. Audio-based tracking has no way to predict mouth
shape when the user is not speaking. Based on these observations,
we propose a confidence-based retrieval scheme, which utilizes the
confidence of the visual and audio information to define a combined
distance based on the PSPP vector and lip performance vector,
which is further used to extract reasonable samples from the database
to synthesize the final mouth shape. In this way, we combine the
visual and audio information together and let them help each other
to overcome their own drawbacks. Furthermore, the coarticulation
effects indicate that the mapping from audio to mouth shapes is not
a one-to-one mapping, because with different speech content, the
same pronounced sound may be produced using different mouth
motions. As a consequence, we extract sub-sequences instead of
isolated frames from the database and we extract K nearest sub-
sequences (KNN search) as candidates to cover all possible motions
for the current frame. By considering the content information, we
further distinguish the best sub-sequences for all input frames.

To be specific, we first define a distance measure between an input
frame t and a database frame k:

d(t, k) =

0∑
j=−f

‖at+j − ak+j‖22 + β ‖vt − vk‖22. (1)

Here, for considering the audio coarticulation, we involve backward
neighbors (f is set to 2 for all our experiments) to calculate the
distance of PSPP vectors. Notice that we cannot involve forward
neighbors for real-time applications. In the online stage, β is dynam-
ically changed with the confidence of audio and visual information:

β = 2.7 exp(−cat /cvt ).

The audio confidence cat is only decided by a silence detector as:

cat =

{
1 if non-silence
0 if silence

,

for the reason that it is impossible to infer mouth shapes from audio
when the user is not speaking. The silence detector is implemented
by setting a threshold (0.4 in all the experiments) on the silence
element in at. The visual confidence cvt is calculated by the fitting
error of the mouth features in the visual tracking step. To be specific,

cvt = exp(−
n∑

i=1

‖vfit
t − vdepth

t ‖22), (2)

where vfit
t denotes the lip performance vector defined by the fitting

result while vdepth
t denotes the lip performance vector defined on

the input depth. From our experiments, we see that cvt decreases
when there is occlusion, large pose or lighting change.

Eq. 1 is then used to extract candidate frames from the database,
followed by collecting their neighbors to form candidate sequences.
However, in practice, the time varying β makes it impossible to
pre-build KD-trees for the database for fast search. Trading off
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Figure 4: Candidate extraction. Left: Input frame with a and v.
Right: Candidates obtained by the two KD-tree based method (top)
and the full search method (bottom). Notice that this frame has low
audio confidence (β = 2.7). The first two candidates of the two
KD-tree based method are obtained by visual nearest neighbors,
while the third candidate is obtained by audio nearest neighbors.

performance, we pre-build two KD-trees for all ai and vi in the
database, respectively. In the online stage, for each input frame t, we
extract theK nearest frames for both at and vt, which are denoted as
{ak

t |k = 1, ...K} and {vk
t |k = 1, ...K}. If K is set to a reasonable

value (K = 20 in all our experiments), the 2K candidates should
include samples that are close to the input {at, vt} with respect to
Eq. 1. Notice that when the audio and visual confidences are both
very low, it is not reasonable to use Eq. 1 to extract candidates. In
this case, we simply apply a sequence with neutral expression as the
only candidate. Here the silence detector is again used to determine
low audio confidence while a threshold (0.5 in all the experiments)
for Eq. 2 is used to detect low visual confidence.

To compare the two KD-tree based method and the full search
method, we visualize some candidates extracted by the two methods
(shown in Fig. 4). We see that the two KD-tree based method extracts
reasonable candidates which are the same as the full search method
(the first two candidates). Even if it includes some candidates (the
last candidate) obtained from a low-confidence signal, the final result
is comparable (shown in the accompanying video) because Eq. 1 is
still used to choose the best candidate in the following steps.

After the KNN search, we get all candidate sequences for frame t,
denoted as

{(ãk
t , ṽ

k
t , w̃

k
t )|k = 1, ..., 2K},

where

(ãk
t , ṽ

k
t , w̃

k
t ) = {(ak−f

t , vk−f
t ,wk−f

t ), ..., (ak+f
t , vk+f

t ,wk+f
t )}

which stands for candidate sequences with 2f + 1 frames.

The next step is to choose the best candidate sequence for each frame
to reconstruct the final mouth shape. To solve this problem, our
key observation is that the desired candidate sequences of all input
frames should be consistent with each other in their overlapping
regions. Based on this observation, we use dynamic programing to
chose one candidate sequence for each input frame.

In particular, we construct a graph where each candidate k of frame
t is represented by a node Nt,k. And each node belonging to frame
t is connected to all nodes of its neighboring frames t− 1 and t+ 1
by edges. After constructing the graph, we define the distance of an
edge as follows:

D(Nt,p, Nt+1,q) = d(t, p) + d(t+ 1, q) + αdis(w̃p
t , w̃

q
t+1).

(3)

Figure 5: Comparing greedy search with dynamic programming.
Top: Ground-truth sequence. Middle: Result of greedy search.
Bottom: Result of dynamic programming.

The first two terms measure how much the two candidate sequences
match their corresponding input. dis(w̃p

t , w̃
q
t+1) measures how

much the two candidate sequences are consistent to each other in
mouth shape. To measure this, we again use the pre-defined n mesh
vertices around the mouth region from the multilinear model. After
using the weights w̃p

t and w̃q
t+1 to reconstruct the position of the

vertices on the neutral identity, the average Euclidean distance of the
vertices on overlapping frames is used to measure the mouth shape
distance:

dis(w̃p
t , w̃

q
t+1) =

1

2fn

f−1∑
j=−f

n∑
i=1

‖vi(wp+j+1
t )− vi(wq+j

t+1)‖
2
2.

After defining the distance of each edge, dynamic programming
is able to find a path from the first frame to the last frame with
minimum total distance among all possible paths in the graph. The
parameter α (set to 5 in all our experiments) is used to balance the
smoothness and the similarity to the input, which yields a plausible
result w̃DP

t after dynamic programming. Finally, we use the middle
frame in sequence w̃DP

t , which corresponds to the input frame t, as
the output of frame t, denoted as wM

t .

Dynamic programming is able to find the path with the globally min-
imum energy. However, it requires processing all the input frames,
which is not suitable for our real-time application. To overcome
this drawback, we use a greedy search algorithm to replace dynamic
programming. To be specific, for the first input frame, after deriving
all the candidate sequences, we use the candidate with the minimum
value of Eq. 1 as the output. Then for each new input frame, we
calculate Eq. 3 with fixed p for the reason that the output of the
previous frame is already decided. The candidate q with minimum
Eq. 3 among all candidates is taken as the output of the current frame.

The greedy search algorithm seeks a local minimum of the energy
which is an approximation of dynamic programming. To measure
how accurate the approximation is, we record an input audio ac-
companied with facial IR makers to reconstruct ground-truth mouth
motion, and then we compare the two algorithms though the results
of our system. Numerically, the two methods give comparable re-
sults (shown in Tab. 1 and Fig. 6). This is consistent with the visual
result shown in Fig. 5 and the accompanying video. Both of the
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Figure 6: Error curves of greedy search and dynamic programming.
The Error here is the average vertex distance used to calculate
Avd in Tab. 1.

Method AvE Avd (cm) Cor
Greedy search 1.1171 0.2771 0.4404

Dynamic programming 0.9710 0.2874 0.4658

Table 1: Comparison of greedy search and dynamic programming.
AvE measures the average per-frame energy of the obtained path.
Avd measures the average vertex distance from the reconstructed
result to the ground truth obtained by IR markers. Cor measures
the average correlation between the reconstructed vertex trajectory
and the ground-truth trajectory.

algorithms reconstruct motions that are consistent with the input,
even though the mouth shapes are still different from the ground
truth.

5.4 Result Composition

In this subsection, we use wexp
t and wM

t to synthesize the final
output wt. Ideally, the synthesized face wt should match wM

t in the
mouth region and match wexp

t in the non-mouth region. This leads
to the following linear equation:

B wt =M B wM
t + (I −M)B wexp

t .

Here, B is the face expression basis of the multilinear model and M
is a 3P × 3P (P is the total number of vertices on the multilinear
model) diagonal matrix with 1 denoting the vertices on the mouth
region and 0 denoting other vertices. As B and M are predefined
and do not change with t, the linear equation can be solved with the
following online linear operation:

wt = B−1M B wM
t + B−1 (I −M)B wexp

t .

(a) (b) (c) (d)

Figure 7: Result Composition. (a) Input image of frame t. (b) Result
with wexp

t . (c) Result with wM
t . (d) Result with wt.
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Figure 8: Error curves of the two DNN models. The Error here is
the average vertex distance used to calculate Avd in Tab. 2.

With wid, wt and the global pose qt, we generate the tracking results
given the online visual and audio input as shown in Fig. 7. Also,
if we have an avatar with the same defined expression basis, we
can transfer wt and qt to the avatar to generate animations on new
characters in real time.

6 Results and Discussion

In this section, we first examine the key components of our system,
and then show our results on different speakers, with different speech
content and motions. Finally, we discuss the limitations of our
system.

Performance Our system is implemented on a computer with a
3.20 GHZ four core CPU, 16G RAM and NVIDIA Geforce GTX
680 graphics card. In the training stage, the real-time DNN model
takes 36 hours for training with 309 hours of audio data. Our audio-
visual database requires about 1 hour for data recording and about
4 hours for post-processing. In the online stage, our system takes
15-20 ms for estimating the PSPP vector and 3ms for estimating the
lip performance vector. The regression algorithm takes 8ms to get
the lip motion and another 1 ms for synthesizing the final result and
rendering. So the system runs at about 30 FPS on average.

6.1 Evaluation

We evaluate two key components of our system. The first is our
real-time DNN model, which achieves user-independent PSPP esti-
mation in real time. The second is our lip motion regression, which
combines audio and visual information together to achieve more
accurate and robust facial tracking compared with audio-only and
visual-only solutions.

6.1.1 Real-time DNN Model

We have trained a real-time DNN model which estimates the PSPP
vector of an input audio stream in real time. The phoneme accuracy
of our model and the original DNN model is compared in Tab. 2
by accuracy. We see that the accuracy of our model drops by 10%
compared with the original DNN model. Besides the phoneme ac-
curacy, we also compare the two models on the final output of our
system. A numerical comparison is also shown in Tab. 2 by Avd
and Cor. Also, the error curves of a short sequence are compared
in Fig. 8. Even though the original DNN is slightly better than our
DNN on this numerical comparison, judging from the visual com-
parison shown in our accompanying video, our DNN is comparable
to the original DNN. The underlying reason is that our system only
utilizes the PSPP vector to extract candidates from the database. By
adjusting the number of candidates, we can guarantee that reason-
able candidates are always extracted by our real-time DNN model,
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Figure 9: Comparison with visual-only solution. Top: Reference
images. Middle: Results of our solution. Bottom: Results of visual-
only solution.

even though its phoneme accuracy is lower. With our lip motion
regression model, reasonable lip motion can still be synthesized.

Method Accuracy (%) Avd (cm) Cor
Original DNN 69.87 0.2673 0.4675

Real-time DNN 59.90 0.2771 0.4404

Table 2: Comparison of the two DNN models. The phoneme with
maximum probability is treated as the estimated phoneme of the two
DNN models. Accuracy is calculated with respect to the ground
truth. Avd measures the average vertex distance from the recon-
structed result to the ground truth obtained by IR markers. Here, we
still use the positions of n pre-defined vertices on the mouth region
to judge the accuracy of the reconstruction of mouth shapes. Cor
measures the average correlation between the reconstructed vertex
trajectory and the ground-truth trajectory.

6.1.2 Lip motion regression

Our method jointly utilizes visual and audio information to deter-
mine the lip motion of an input user. Here, we compare it with
visual-only and audio-only solutions. Fig. 9 shows cases where vi-
sual tracking fails to locate correct feature point positions on images
due to fast motion, large occlusion and extreme head pose. In these
situations, audio information helps to extract reasonable candidates
from the database and the greedy search algorithm chooses from
those candidates and synthesizes plausible results. In other situ-
ations with normal facial motion and speech, the visual tracking
works well and the audio information only slightly improves the
final tracking result as shown in Tab. 3 (Visual comparison is shown
in the accompanying video.). Here, we do not use facial IR markers
to get 3D ground-truth positions as they may lead to an unfair com-
parison by influencing visual tracking. Instead, we manually define
ground-truth landmark positions in the image domain to measure
tracking accuracy. In Tab. 3, the improvement is limited because in
these situations, the visual information by itself is almost enough to
determine the mouth shapes. As speech is determined not only by
mouth shape, it only helps to generate plausible mouth shapes but
not exactly the ground truth.

On the other hand, the audio-only solution meets difficulties when

Figure 10: Comparison with audio-only solution. Top: Reference
images. Middle: Results of our solution. Bottom: Results of audio-
only solution.

the speaker is silent. Furthermore, as different people may have
different mouth shapes when speaking the same speech content,
the audio-only solution can only output a plausible result whose
overall motion matches the input speech but not exactly match the
ground truth. Fig. 10 shows a sequence result of our solution and the
audio-only solution when a user is talking. We see that our solution
matches the input better than the audio-only solution. Notice that
the leftmost two results are obtained when the user is talking, and
the audio-only solution may fail to output accurate mouth shapes
sometimes. The rightmost two results are obtained when the user is
not talking, so the audio-only solution outputs a closed mouth shape.

To evaluate the effectiveness of jointly using visual and speech
features as input in the regression, we compare our method to simply
blending audio-only and visual-only results by confidence, as shown
in the accompanying video. We see that naive blending leads to
less accurate mouth shapes in some frames and temporal flickering
caused by sudden confidence change, while our method does not
suffer from these kinds of limitations.

Method Avd (pixel) Stdev
Visual-only 4.79 1.46

Audio visual-combined 4.74 1.37

Table 3: Reconstruction errors in the image domain.

6.2 Results

In this subsection, we show more results of our system on different
users with different speech and motion (Fig 11). To better view our
result, please refer to our accompanying video which integrates the
input audio tracks. Notice that our real-time demo is recorded in an
office with background noise and the users’ motion contains large
occlusion and extreme poses.

6.3 Limitations

Our system currently has several limitations. First of all, our user-
independent visual tracking technique is not the state-of-the-art in
the literature. As discussed before, the online update technique [Li
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Figure 11: Results for different users with different speech and motions.

et al. 2013; Bouaziz et al. 2013; Cao et al. 2014a] can be used here
to obtain better visual tracking results, which will definitely improve
the accuracy of our whole system. Secondly, we assume that the
correlation between audio and mouth shape is user-independent, thus
after extracting user-independent visual and audio features, we syn-
thesize the result for any input user from a database of one specific
person. However, different people still have their own characteris-
tics when pronouncing the same speech, and these differences are
ignored by our technique. Furthermore, we have not considered the
correlation between emotion and mouth shape when people talk,
so we use a database recorded with a neutral expression. From the
results, we have not seen any artifact caused by this. But in theory,
involving emotion in building the relationship between speech and
mouth shape should be more reasonable. Finally, our system consid-
ers audio and visual confidence in the lip motion regression, which
gives more robust facial motion tracking compared with audio-only
or visual-only solutions. However, when the two kinds of signals
are both of low confidence, our system cannot give a correct result,
e.g. when there is an extremely large occlusion in the scene and the
user is not talking.

7 Conclusion

We propose a facial tracking and animation system for capturing
3D facial performance in real time. Based on a data driven lip
motion regressor, our system can reconstruct more accurate 3D
mouth motions from combined video and speech audio information
and thus is more robust than video based real-time facial animation
methods. We also present a real-time speaker-independent DNN
based acoustic model for automatically extracting PSPP from a
speech audio. We tested our system with live audio and video
sequences captured from different actors and also transferred our
reconstruction results to other 3D characters.

In future work, we would like to explore other regression methods
for modeling the correlation between speech and lip motion, and
develop more efficient techniques for mouth shape refinement. Our
current system is based on the Kinect sensor. We also want to

investigate how to use our method to enhance other video-based real-
time facial tracking solutions. Another interesting future directionis
to jointly use the captured audio and video information for other
speech processing tasks.
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